Ergodicity, hidden bias and the growth rate gain

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodicity, hidden bias and the growth rate gain.

Many single-cell observables are highly heterogeneous. A part of this heterogeneity stems from age-related phenomena: the fact that there is a nonuniform distribution of cells with different ages. This has led to a renewed interest in analytic methodologies including use of the 'von Foerster equation' for predicting population growth and cell age distributions. Here we discuss how some of the m...

متن کامل

Ergodicity of hidden Markov models

In this paper we study ergodic properties of hidden Markov models with a generalized observation structure. In particular sufficient conditions for the existence of a unique invariant measure for the pair filter-observation are given. Furthermore, necessary and sufficient conditions for the existence of a unique invariant measure of the triple state-observation-filter are provided in terms of a...

متن کامل

an investigation about the relationship between insurance lines and economic growth; the case study of iran

مطالعات قبلی بازار بیمه را به صورت کلی در نظر می گرفتند اما در این مطالعه صنعت بیمه به عنوان متغیر مستفل به بیمه های زندگی و غیر زندگی شکسته شده و هم چنین بیمه های زندگی به رشته های مختلف بیمه ای که در بازار بیمه ایران سهم قابل توجهی دارند تقسیم میشود. با استفاده از روشهای اقتصاد سنجی داده های برای دوره های 48-89 از مراکز ملی داده جمع آوری شد سپس با تخمین مدل خود بازگشتی برداری همراه با تعدادی ...

15 صفحه اول

Geometric Ergodicity in Hidden Markov Models

We consider an hidden Markov model with multidimensional observations, and with misspecii-cation, i.e. the assumed coeecients (transition probability matrix, and observation conditional densities) are possibly diierent from the true coeecients. Under mild assumptions on the coeecients of both the true and the assumed models, we prove that : (i) the prediction lter, and its gradient w.r.t. some ...

متن کامل

Exponential Forgetting and Geometric Ergodicity in Hidden Markov Models

We consider a hidden Markov model with multidimensional observations, and with misspecification, i.e. the assumed coefficients (transition probability matrix, and observation conditional densities) are possibly different from the true coefficients. Under mild assumptions on the coefficients of both the true and the assumed models, we prove that : (i) the prediction filter forgets almost surely ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Biology

سال: 2018

ISSN: 1478-3975

DOI: 10.1088/1478-3975/aab0e6