Ergodicity, hidden bias and the growth rate gain
نویسندگان
چکیده
منابع مشابه
Ergodicity, hidden bias and the growth rate gain.
Many single-cell observables are highly heterogeneous. A part of this heterogeneity stems from age-related phenomena: the fact that there is a nonuniform distribution of cells with different ages. This has led to a renewed interest in analytic methodologies including use of the 'von Foerster equation' for predicting population growth and cell age distributions. Here we discuss how some of the m...
متن کاملErgodicity of hidden Markov models
In this paper we study ergodic properties of hidden Markov models with a generalized observation structure. In particular sufficient conditions for the existence of a unique invariant measure for the pair filter-observation are given. Furthermore, necessary and sufficient conditions for the existence of a unique invariant measure of the triple state-observation-filter are provided in terms of a...
متن کاملan investigation about the relationship between insurance lines and economic growth; the case study of iran
مطالعات قبلی بازار بیمه را به صورت کلی در نظر می گرفتند اما در این مطالعه صنعت بیمه به عنوان متغیر مستفل به بیمه های زندگی و غیر زندگی شکسته شده و هم چنین بیمه های زندگی به رشته های مختلف بیمه ای که در بازار بیمه ایران سهم قابل توجهی دارند تقسیم میشود. با استفاده از روشهای اقتصاد سنجی داده های برای دوره های 48-89 از مراکز ملی داده جمع آوری شد سپس با تخمین مدل خود بازگشتی برداری همراه با تعدادی ...
15 صفحه اولGeometric Ergodicity in Hidden Markov Models
We consider an hidden Markov model with multidimensional observations, and with misspecii-cation, i.e. the assumed coeecients (transition probability matrix, and observation conditional densities) are possibly diierent from the true coeecients. Under mild assumptions on the coeecients of both the true and the assumed models, we prove that : (i) the prediction lter, and its gradient w.r.t. some ...
متن کاملExponential Forgetting and Geometric Ergodicity in Hidden Markov Models
We consider a hidden Markov model with multidimensional observations, and with misspecification, i.e. the assumed coefficients (transition probability matrix, and observation conditional densities) are possibly different from the true coefficients. Under mild assumptions on the coefficients of both the true and the assumed models, we prove that : (i) the prediction filter forgets almost surely ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Biology
سال: 2018
ISSN: 1478-3975
DOI: 10.1088/1478-3975/aab0e6